3 research outputs found

    Energy Efficiency Prediction using Artificial Neural Network

    Get PDF
    Buildings energy consumption is growing gradually and put away around 40% of total energy use. Predicting heating and cooling loads of a building in the initial phase of the design to find out optimal solutions amongst different designs is very important, as ell as in the operating phase after the building has been finished for efficient energy. In this study, an artificial neural network model was designed and developed for predicting heating and cooling loads of a building based on a dataset for building energy performance. The main factors for input variables are: relative compactness, roof area, overall height, surface area, glazing are a, wall area, glazing area distribution of a building, orientation, and the output variables: heating and cooling loads of the building. The dataset used for training are the data published in the literature for various 768 residential buildings. The model was trained and validated, most important factors affecting heating load and cooling load are identified, and the accuracy for the validation was 99.60%

    Diagnosis of Pneumonia Using Deep Learning

    Get PDF
    Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent machines or software that work and react like humans. Some of the activities computers with artificial intelligence are designed for include, Speech, recognition, Learning, Planning and Problem solving. Deep learning is a collection of algorithms used in machine learning, It is part of a broad family of methods used for machine learning that are based on learning representations of data. Deep learning is a technique used to produce Pneumonia detection and classification models using x-ray imaging for rapid and easy detection and identification of pneumonia. In this thesis, we review ways and mechanisms to use deep learning techniques to produce a model for Pneumonia detection. The goal is find a good and effective way to detect pneumonia based on X-rays to help the chest doctor in decision-making easily and accuracy and speed. The model will be designed and implemented, including both Dataset of image and Pneumonia detection through the use of Deep learning algorithms based on neural networks. The test and evaluation will be applied to a range of chest x-ray images and the results will be presented in detail and discussed. This thesis uses deep learning to detect pneumonia and its classification

    Handwritten Signature Verification using Deep Learning

    Get PDF
    Every person has his/her own unique signature that is used mainly for the purposes of personal identification and verification of important documents or legal transactions. There are two kinds of signature verification: static and dynamic. Static(off-line) verification is the process of verifying an electronic or document signature after it has been made, while dynamic(on-line) verification takes place as a person creates his/her signature on a digital tablet or a similar device. Offline signature verification is not efficient and slow for a large number of documents. To overcome the drawbacks of offline signature verification, we have seen a growth in online biometric personal verification such as fingerprints, eye scan etc. In this paper we created CNN model using python for offline signature and after training and validating, the accuracy of testing was 99.70%
    corecore